Hubble Space Telescope – Wikipedia

May 10, 2019

https://en.wikipedia.org/wiki/Hubble_Space_Telescope
[tag perfection0mg,quote]
QT:{{”

Analysis of the flawed images showed that the cause of the problem was that the primary mirror had been polished to the wrong shape. Although it was probably the most precisely figured optical mirror ever made, smooth to about 10 nm (0.4 μin),[24] at the perimeter it was too flat by about 2,200 nanometers (2.2 micrometers; 87 microinches).[60] This difference was catastrophic, introducing severe spherical aberration, a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.[61] …
A commission headed by Lew Allen, director of the Jet Propulsion Laboratory, was established to determine how the error could have arisen. The Allen Commission found that a reflective null corrector, a testing device used to achieve a properly shaped non-spherical mirror, had been incorrectly assembled—one lens was out of position by 1.3 mm (0.051 in).[65] During the initial grinding and polishing of the mirror, Perkin-Elmer analyzed its surface with two conventional refractive null correctors. However, for the final manufacturing step (figuring), they switched to the custom-built reflective null corrector, designed explicitly to meet very strict tolerances. The incorrect assembly of this device resulted in the mirror being ground very precisely but to the wrong shape. A few final tests, using the conventional null correctors, correctly reported spherical aberration. But these results were dismissed, thus missing the opportunity to catch the error, because the reflective null corrector was considered more accurate.[66]

Because of the way the HST’s instruments were designed, two different sets of correctors were required. The design of the Wide Field and Planetary Camera 2, already planned to replace the existing WF/PC, included relay mirrors to direct light onto the four separate charge-coupled device (CCD) chips making up its two cameras. An inverse error built into their surfaces could completely cancel the aberration of the primary. However, the other instruments lacked any intermediate surfaces that could be figured in this way, and so required an external correction device.[73]
“}}