Posts Tagged ‘math’
Tansu YEÄEN on Twitter: “Multiplication from scratchđ https://t.co/Ivb0mp0Wcg” / Twitter
October 15, 2022Professor suspected of being a terrorist because of a math equation
May 11, 2016Prof suspected of being a terrorist because of a #math equation http://usat.ly/273zpEI What if he’d drawn chemical models instead HT @Layth
http://www.usatoday.com/story/news/2016/05/07/professors-airplane-math-leads-flight-delay/84084914/
Twisted Math and Beautiful Geometry Ă» American Scientist
March 6, 2016Twisted #Math & Beautiful Geometry
http://www.americanscientist.org/issues/id.16146,y.2014,no.2,content.true,page.1,css.print/issue.aspx nice overview of 4 tricky shapes: cycloids, epicycles, spirals & steiner prisms
A Group of American Teens Are Excelling at Advanced Math – The Atlantic
February 25, 2016A Group of American Teens Are Excelling at…#Math
http://www.theatlantic.com/magazine/archive/2016/03/the-math-revolution/426855/ To teach concepts or facts to the “educational 1-percenters”
Rock-paper-scissors may explain evolutionary ‘games’ in nature
September 8, 2015Rock-paper-scissors may explain evolutionary ‘games’
http://news.sciencemag.org/biology/2015/05/rock-paper-scissors-may-explain-evolutionary-games-nature How aggressive, cooperative & deceptive behaviors can coexist
QT:{{”
âThe hand game ârock-paper-scissorsâ is a classic way to settle playground disputes, with rock smashing scissors, scissors cutting paper, and paper covering rock. But it turns out that nature plays its own versions of the game, and mathematicians and biologists have used it to study everything from human societies to bacteria in a petri dish. Now, researchers have found that when players change their strategies on the fly, a stable pattern arises in which each of the three weapons gains and loses popularity in turn. The discovery could shed light on how living creatures maintain competing strategies in the struggle for existence.
When applied to biology, rock-paper-scissors blossoms from a two-person childrenâs game into a complex dance among multiple players. Certain lizards, for example, use three competing
strategiesâaggression, cooperation, and deceptionâto win mates, with each tactic beating one and losing to anotherâjust like rock, paper, and scissors. For the lizards, winning the game equates to making babies.
…
Inspired by computer simulations of a related game, two
mathematiciansâSteven Strogatz and Danielle Toupo of Cornell Universityâdecided to get to the root of what happens when players switch strategies midgame. âI thought it was fascinating, and I wanted to find a mathematical model that would describe this in its simplest form,â Strogatz says. They went back to basics, studying the pure equations instead of complicated computer simulations.â
“}}
John Horton Conway: the worldâs most charismatic mathematician | Siobhan Roberts | Science | The Guardian
September 4, 2015John Horton Conway: the worldâs most charismatic #mathematician
http://www.theguardian.com/science/2015/jul/23/john-horton-conway-the-most-charismatic-mathematician-in-the-world Floccinaucinihilipilification is his favourite word
Solving an Unsolvable Math Problem – The New Yorker
February 9, 2015The pursuit of beauty http://www.newyorker.com/magazine/2015/02/02/pursuit-beauty Zhang’s 2 accomplishments: Solving a #math mystery about gaps in primes & Doing it after age 50
Profiles FEBRUARY 2, 2015 ISSUE
The Pursuit of Beauty
Yitang Zhang solves a pure-math mystery
BY ALEC WILKINSON
Mathematicians Make a Major Discovery About Prime Numbers | WIRED
December 23, 2014Major Discovery About #Prime Numbers
http://www.wired.com/2014/12/mathematicians-make-major-discovery-prime-numbers Extension of trick to find spans of composites, eg start w/ 101! add 2,3,4…101
QT:{{”
The two new proofs of ErdĆsâ conjecture are both based on a simple way to construct large prime gaps. A large prime gap is the same thing as a long list of non-prime, or âcomposite,â numbers between two prime numbers. Hereâs one easy way to construct a list of, say, 100 composite numbers in a row: Start with the numbers 2, 3, 4, ⊠, 101, and add to each of these the number 101 factorial (the product of the first 101 numbers, written 101!). The list then becomes 101! + 2, 101! + 3, 101! + 4, ⊠, 101! + 101. Since 101! is divisible by all the numbers from 2 to 101, each of the numbers in the new list is composite: 101! + 2 is divisible by 2, 101! + 3 is divisible by 3, and so on. âAll the proofs about large prime gaps use only slight variations on this high school construction,â said James Maynard of Oxford, who wrote the second of the two papers.
“}}
Candy Crush’s Puzzling Mathematics » American Scientist
October 26, 2014Candy Crush’s Puzzling #Mathematics http://www.americanscientist.org/issues/id.16278,y.2014,no.6,content.true,page.1,css.print/issue.aspx Game reducible to a NP-hard logic circuit; maybe useful in solving other problems
QT:{{"
To show that Candy Crush is a mathematically hard problem, we could
reduce to it from any problem in NP. To make life simple, my
colleagues and I started from the granddaddy of all problems in NP,
finding a solution to a logical formula. This is called the
satisfiability problem. You will have solved such a problem if you
ever tackled a logic puzzle. You have to decide which propositions to
make true, and which to make false, to satisfy some set of logical
formulae: The Englishman lives in the red house. The Spaniard owns the
dog. The Norwegian lives next to the blue house. Should the
proposition that the Spaniard owns the zebra be made true or false?
To reduce a logic puzzle to a Candy Crush problem, we exploit the
close connection between logic and electrical circuits. Any logical
formula can simply be represented with an electrical circuit.
Computers are, after all, just a large collection of logic gatesâANDs,
ORs, and NOTsâwith wires connecting them together. So all we need to
do is show that you could build an electrical circuit in a Candy Crush
game.
…
The idea of problem reduction offers an intriguing possibility for
Candy Crush addicts. Perhaps we can profit from the millions of hours
humans spend solving Candy Crush problems? By exploiting the idea of a
problem reduction, we could conceal some practical computational
problems within these puzzles. Other computational problems benefit
from such interactions: Every time you prove to a website that youâre
a person and not a bot by solving a CAPTCHA (one of those ubiquitous
distorted images of a word or number that you have to type in) the
answer helps Google digitize old books and newspapers. Perhaps we
should put Candy Crush puzzles to similar good uses.
"}}
A Billionaire Mathematicianâs Life of Ferocious Curiosity
July 20, 2014Billionaire Mathematicianâs Life
http://www.nytimes.com/2014/07/08/science/a-billionaire-mathematicians-life-of-ferocious-curiosity.html âI wasnât the fastest guy…but I like to ponder[;] turns out to be…pretty good.â
A Billionaire Mathematicianâs Life of Ferocious Curiosity
http://www.nytimes.com/2014/07/08/science/a-billionaire-mathematicians-life-of-ferocious-curiosity.html
QT:{{
âI wasnât the fastest guy in the world,â Dr. Simons said of his youthful math enthusiasms. âI wouldnât have done well in an Olympiad or a math contest. But I like to ponder. And pondering things, just sort of thinking about it and thinking about it, turns out to be a pretty good approach.â
}}