modens ponens modus tolens with arrows – Google Search

January 31, 2026

https://www.google.com/search?q=modens+ponens+modus+tolens+with+arrows&oq=modens+ponens+modus+tolens+with+arrows&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIJCAEQIRgKGKABMgkIAhAhGAoYoAEyCQgDECEYChigATIJCAQQIRgKGKAB0gEJMTUzMzFqMGo0qAIDsAIB8QV2gVGKoC56WQ&sourceid=chrome&ie=UTF-8 QT:{{”

Modus ponens and modus tollens are valid deductive inference rules in logic, often represented with arrows (
→right arrow
→ for “if…then” and
∴∴
∴ for “therefore”). Modus ponens affirms the antecedent (
P→Q,P,∴Qcap P right arrow cap Q comma cap P comma ∴ cap Q
𝑃→𝑄,𝑃,∴𝑄), while modus tollens denies the consequent (
P→Q,¬Q,∴¬Pcap P right arrow cap Q comma logical not cap Q comma ∴ logical not cap P
𝑃→𝑄,¬𝑄,∴¬𝑃).
Modus Ponens (Method of Affirming)

Structure:

If
Pcap P
𝑃, then
Qcap Q
𝑄 (
P→Qcap P right arrow cap Q
𝑃→𝑄)
Pcap P
𝑃
∴Q∴ cap Q
∴𝑄

Example: If it rains (
Pcap P
𝑃), then the ground is wet (
Qcap Q
𝑄). It is raining (
Pcap P
𝑃). Therefore, the ground is wet (
Qcap Q
𝑄).

Modus Tollens (Method of Denying)

Structure:

If
Pcap P
𝑃, then
Qcap Q
𝑄 (
P→Qcap P right arrow cap Q
𝑃→𝑄)
Not
Qcap Q
𝑄 (
¬Qlogical not cap Q
¬𝑄)
∴∴
∴ Not
Pcap P
𝑃 (
¬Plogical not cap P
¬𝑃)

Example: If it rains (
Pcap P
𝑃), then the ground is wet (
Qcap Q
𝑄). The ground is not wet (
¬Qlogical not cap Q
¬𝑄). Therefore, it is not raining (
¬Plogical not cap P
¬𝑃).

“}}