Archive for the 'SciLit' Category

How to use likelihood ratios to interpret evidence from randomized trials – ScienceDirect

November 30, 2025

https://www.sciencedirect.com/science/article/pii/S0895435621001323

Rare genetic variants confer a high risk of ADHD and implicate neuronal biology | Nature

November 23, 2025

https://www.nature.com/articles/s41586-025-09702-8

Demontis, D., Duan, J., Hsu, Y. H., Pintacuda, G., Grove, J., Nielsen, T. T., Thirstrup, J., Martorana, M., Botts, T., Satterstrom, F. K., Bybjerg-Grauholm, J., Tsai, J. H. Y., Glerup, S., Hoogman, M., Buitelaar, J., Klein, M., Ziegler, G. C., Jacob, C., Grimm, O., . . . Børglum, A. D. (2025). Rare genetic variants confer a high risk of ADHD and implicate neuronal biology. Nature.
https://doi.org/10.1038/s41586-025-09702-8

QT:{{”
Common genetic variants associated with the disorder have been identified12,13, but the role of rare variants in ADHD is mostly unknown. Here, by analysing rare coding variants in exome-sequencing data from 8,895 individuals with ADHD and 53,780 control individuals, we identify three genes (MAP1A, ANO8 and ANK2; P < 3.07 × 10−6; odds ratios 5.55–15.13) that are implicated in ADHD.
“}}

Follow-up on error-controlled hypothesis generation

November 22, 2025

Chen, W., Jiang, Y., Noble, W. S., & Lu, Y. Y. (2025).
Error-controlled non-additive interaction discovery in machine learning models. Nature Machine Intelligence, 7(9), 1541–1554. https://doi.org/10.1038/s42256-025-01086-8

Crystal structure of globular domain of histone H5 and its implications for nucleosome binding – PubMed

October 19, 2025

https://pubmed.ncbi.nlm.nih.gov/8384699/

The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery: Cell

October 18, 2025

Capstone reviews/perspectives for reference

**IHEC**

The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery
Hendrik G. Stunnenberg ∙ The International Human Epigenome Consortium4 ∙ Martin Hirst

Stunnenberg, H. G., Hirst, M., Abrignani, S., Adams, D., De Almeida, M., Altucci, L., Amin, V., Amit, I., Antonarakis, S. E., Aparicio, S., Arima, T., Arrigoni, L., Arts, R., Asnafi, V., Esteller, M., Bae, J., Bassler, K., Beck, S., Berkman, B., . . . Zipprich, G. (2016). The International Human Epigenome Consortium: a blueprint for Scientific collaboration and Discovery. Cell, 167(5), 1145–1149.
https://doi.org/10.1016/j.cell.2016.11.007

** EXRNA**

The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research

Das, S., Ansel, K. M., Bitzer, M., Breakefield, X. O., Charest, A., Galas, D. J., Gerstein, M. B., Gupta, M., Milosavljevic, A., McManus, M. T., Patel, T., Raffai, R. L., Rozowsky, J., Roth, M. E., Saugstad, J. A., Van Keuren-Jensen, K., Weaver, A. M., Laurent, L. C., Abdel-Mageed, A. B., . . . Zhang, H. (2019). The Extracellular RNA Communication Consortium: Establishing foundational knowledge and technologies for extracellular RNA research. Cell, 177(2), 231–242. https://doi.org/10.1016/j.cell.2019.03.023

**ENCODE3**

Perspectives on ENCODE
The ENCODE Project Consortium, Michael P Snyder 1,2,✉, Thomas R Gingeras 3, Jill E Moore 4, Zhiping Weng 4,5,6, Mark B Gerstein 7, Bing Ren 8,9, Ross C Hardison 10, John A Stamatoyannopoulos 11,12,13, Brenton R Graveley 14, Elise A Feingold 15, Michael J Pazin 15, Michael Pagan 15, Daniel A Gilchrist 15, Benjamin C Hitz 1, J Michael Cherry 1, Bradley E Bernstein 16, Eric M Mendenhall 17,18, Daniel R Zerbino 19, Adam Frankish 19, Paul Flicek 19, Richard M Myers 18

Abascal, F., Acosta, R., Addleman, N. J., Adrian, J., Afzal, V., Aken, B., Ai, R., Akiyama, J. A., Jammal, O. A., Amrhein, H., Anderson, S. M., Andrews, G. R., Antoshechkin, I., Ardlie, K. G., Armstrong, J., Astley, M., Banerjee, B., Barkal, A. A., Barnes, I. H. A., . . . Myers, R. M. (2020).

Perspectives on ENCODE. Nature, 583(7818), 693–698.
https://doi.org/10.1038/s41586-020-2449-8

A computational pipeline for spatial mechano-transcriptomics | Nature Methods

September 7, 2025

https://www.nature.com/articles/s41592-025-02618-1

Hallou, A., He, R., Simons, B. D., & Dumitrascu, B. (2025). A computational pipeline for spatial mechano-transcriptomics. Nature Methods. https://doi.org/10.1038/s41592-025-02618-1

Reviews:
https://www.nature.com/articles/s41580-023-00583-1#Sec35
(difficult to follow)

Combining with Spatial transcriptomics:
https://www.nature.com/articles/s41592-025-02618-1
(new thing)

Human exposure to PM10 microplastics in indoor air | PLOS One

July 30, 2025

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328011

Yakovenko, N., Pérez-Serrano, L., Segur, T., Hagelskjaer, O., Margenat, H., Roux, G. L., & Sonke, J. E. (2025). Human exposure to PM10 microplastics in indoor air. PLOS One.
https://doi.org/10.1371/journal.pone.0328011

Gene name errors are widespread in the scientific literature | Genome Biology | Full Text

July 26, 2025

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7

Ziemann, M., Eren, Y., & El-Osta, A. (2016). Gene name errors are widespread in the scientific literature. Genome Biology, 17(1). https://doi.org/10.1186/s13059-016-1044-7

Scalable emulation of protein equilibrium ensembles with generative deep learning | Science

July 12, 2025

https://www.science.org/doi/10.1126/science.adv9817

Lewis, S., Hempel, T., Jiménez-Luna, J., Gastegger, M., Xie, Y., Foong, A. Y. K., Satorras, V. G., Abdin, O., Veeling, B. S., Zaporozhets, I., Chen, Y., Yang, S., Foster, A. E., Schneuing, A., Nigam, J., Barbero, F., Stimper, V., Campbell, A., Yim, J., . . . Noé, F. (2025, July 10). Scalable emulation of protein equilibrium ensembles with generative deep learning. Science.
https://www.science.org/doi/10.1126/science.adv9817

Aβ∗56 is a stable oligomer that impairs memory function in mice – PMC

June 26, 2025

https://pmc.ncbi.nlm.nih.gov/articles/PMC10905009/

Liu, P., Lapcinski, I. P., Hlynialuk, C. J., Steuer, E. L., Loude, T. J., Shapiro, S. L., Kemper, L. J., & Ashe, K. H. (2024). Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience, 27(3), 109239. https://doi.org/10.1016/j.isci.2024.109239

Aβ∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aβ(1-40).