correlated noise in TF co-association / FFLs

March 9, 2013

Cross Talk and Interference Enhance Information Capacity of a Signaling Pathway Sahand Hormoz
A recurring motif in gene regulatory networks is transcription factors (TFs) that regulate each other and then bind to overlapping sites on DNA, where they interact and synergistically control transcription of a target gene. Here, we suggest that this motif maximizes information flow in a noisy network. Gene expression is an inherently noisy process due to thermal fluctuations and the small number of molecules involved. A consequence of multiple TFs interacting at overlapping binding sites is that their binding noise becomes correlated. Using concepts from information theory, we show that in general a signaling pathway transmits more information if 1), noise of one input is correlated with that of the other; and 2), input signals are not chosen independently.

Best to comment on twitter via @markgerstein. Only use this space for comments that are untweetable!

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s