Archive for the 'SciLit' Category

Assessing the safety of new germicidal far‐UVC technologies – Görlitz – 2024 – Photochemistry and Photobiolog y – Wiley Online Library

March 16, 2025

https://onlinelibrary.wiley.com/doi/10.1111/php.13866

Görlitz, M., Justen, L., Rochette, P. J., Buonanno, M., Welch, D., Kleiman, N. J., Eadie, E., Kaidzu, S., Bradshaw, W. J., Javorsky, E., Cridland, N., Galor, A., Guttmann, M., Meinke, M. C., Schleusener, J., Jensen, P., Söderberg, P., Yamano, N., Nishigori, C., . . . Esvelt, K. (2023). Assessing the safety of new germicidal far‐UVC technologies. Photochemistry and Photobiology, 100(3), 501–520.
https://doi.org/10.1111/php.13866

Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber | Scientific Reports

March 16, 2025

https://www.nature.com/articles/s41598-022-08462-z#:~:text=There%20is%20a%20need%20for,coronaviruses%20and%20influenza%2C%20in%20air.

1906.02691 An Introduction to Variational Autoencoders

March 2, 2025

Has detailed setup for ELBO

https://arxiv.org/abs/1906.02691

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056

Investigating spatial dynamics in spatial omics data with StarTrail | bioRxiv

March 2, 2025

https://www.biorxiv.org/content/10.1101/2024.05.08.593025v1

Chen, J., Xiong, C., Sun, Q., Wang, G. W., Gupta, G. P., Halder, A., Li, Y., & Li, D. (2024). Investigating spatial dynamics in spatial omics data with StarTrail. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2024.05.08.593025

1803.00567 Computational Optimal Transport

March 1, 2025

https://arxiv.org/abs/1803.00567

explains the dual problem well

Peyré, G., & Cuturi, M. (2018, March 1). Computational Optimal transport. arXiv.org. https://arxiv.org/abs/1803.00567

tutorial_on_optimal_transport.pdf

2312.07511 A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems

March 1, 2025

https://arxiv.org/abs/2312.07511

Duval, A., Mathis, S., V., Joshi, C. K., Schmidt, V., Miret, S., Malliaros, F. D., Cohen, T., Liò, P., Bengio, Y., & Bronstein, M. (2023, December 12). A Hitchhiker’s guide to Geometric GNNs for 3D atomic Systems. arXiv.org. https://arxiv.org/abs/2312.07511

Good intuition on spherical harmonics

1906.02691 An Introduction to Variational Autoencoders

February 18, 2025

https://arxiv.org/abs/1906.02691

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056

Conformational sampling and interpolation using language-based protein folding neural networks

February 7, 2025

https://www.biorxiv.org/content/10.1101/2023.12.16.571997v1

Principal component analysis | Nature Reviews Methods Primers

February 4, 2025

https://www.nature.com/articles/s43586-022-00184-w

Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1).
https://doi.org/10.1038/s43586-022-00184-w

Network Analysis as a Grand Unifier in Biomedical Data Science | Annual Reviews

February 4, 2025

https://www.annualreviews.org/content/journals/10.1146/annurev-biodatasci-080917-013444

McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., Kumar, S., Zhou, H., & Gerstein, M. (2018). Network analysis as a grand unifier in biomedical data science. Annual Review of Biomedical Data Science, 1(1), 153–180.
https://doi.org/10.1146/annurev-biodatasci-080917-013444

https://papers.gersteinlab.org/papers/biomednets