https://arxiv.org/abs/1906.02691
Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056
https://arxiv.org/abs/1906.02691
Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056
https://www.nature.com/articles/s43586-022-00184-w
Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1).
https://doi.org/10.1038/s43586-022-00184-w
https://www.annualreviews.org/content/journals/10.1146/annurev-biodatasci-080917-013444
McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., Kumar, S., Zhou, H., & Gerstein, M. (2018). Network analysis as a grand unifier in biomedical data science. Annual Review of Biomedical Data Science, 1(1), 153–180.
https://doi.org/10.1146/annurev-biodatasci-080917-013444
https://pmc.ncbi.nlm.nih.gov/articles/PMC478551/
Spruance, S. L., Reid, J. E., Grace, M., & Samore, M. (2004). Hazard ratio in clinical trials. Antimicrobial Agents and Chemotherapy, 48(8), 2787–2792. https://doi.org/10.1128/aac.48.8.2787-2792.2004
Interesting paper on how the incomplete human genome can cause privacy issues in analyzing metagenomic data.
https://www.nature.com/articles/s41467-025-56077-5
g accounts for the cumulative effect of all other variants on the phenotype besides the effect of the specific variant being tested (SNP s).
Although theoretically we should consider the effect of g when testing for GWAS associations, in practice don’t think this happens in standard GWAS tools, such as PLINK and REGENIE (see below).
PLINK: https://www.cog-genomics.org/plink/2.0/assoc

REGENIE: https://www.nature.com/articles/s41588-021-00870-7#Sec10
https://arxiv.org/abs/2312.07511
Duval, A., Mathis, S., V., Joshi, C. K., Schmidt, V., Miret, S., Malliaros, F. D., Cohen, T., Liò, P., Bengio, Y., & Bronstein, M. (2023, December 12). A Hitchhiker’s guide to Geometric GNNs for 3D atomic Systems. arXiv.org. https://arxiv.org/abs/2312.07511
https://arxiv.org/abs/1803.00567
Peyré, G., & Cuturi, M. (2018, March 1). Computational Optimal transport. arXiv.org. https://arxiv.org/abs/1803.00567
tutorial_on_optimal_transport.pdf
https://www.nature.com/articles/s41592-023-01969-x
Bunne, C., Stark, S. G., Gut, G., Del Castillo, J. S., Levesque, M., Lehmann, K., Pelkmans, L., Krause, A., & Rätsch, G. (2023). Learning single-cell perturbation responses using neural optimal transport. Nature Methods, 20(11), 1759–1768.
https://doi.org/10.1038/s41592-023-01969-x
not so useful for learning OT