Archive for the 'SciLit' Category

1906.02691 An Introduction to Variational Autoencoders

February 18, 2025

https://arxiv.org/abs/1906.02691

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), 307–392. https://doi.org/10.1561/2200000056

Conformational sampling and interpolation using language-based protein folding neural networks

February 7, 2025

https://www.biorxiv.org/content/10.1101/2023.12.16.571997v1

Principal component analysis | Nature Reviews Methods Primers

February 4, 2025

https://www.nature.com/articles/s43586-022-00184-w

Greenacre, M., Groenen, P. J. F., Hastie, T., D’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1).
https://doi.org/10.1038/s43586-022-00184-w

Network Analysis as a Grand Unifier in Biomedical Data Science | Annual Reviews

February 4, 2025

https://www.annualreviews.org/content/journals/10.1146/annurev-biodatasci-080917-013444

McGillivray, P., Clarke, D., Meyerson, W., Zhang, J., Lee, D., Gu, M., Kumar, S., Zhou, H., & Gerstein, M. (2018). Network analysis as a grand unifier in biomedical data science. Annual Review of Biomedical Data Science, 1(1), 153–180.
https://doi.org/10.1146/annurev-biodatasci-080917-013444

https://papers.gersteinlab.org/papers/biomednets

Hazard Ratio in Clinical Trials – PMC

January 26, 2025

https://pmc.ncbi.nlm.nih.gov/articles/PMC478551/

Spruance, S. L., Reid, J. E., Grace, M., & Samore, M. (2004). Hazard ratio in clinical trials. Antimicrobial Agents and Chemotherapy, 48(8), 2787–2792. https://doi.org/10.1128/aac.48.8.2787-2792.2004

Paper on human reads in microbiome data

January 25, 2025

Interesting paper on how the incomplete human genome can cause privacy issues in analyzing metagenomic data.
https://www.nature.com/articles/s41467-025-56077-5

Genome-wide association studies | Nature Reviews Methods Primers

January 25, 2025

g accounts for the cumulative effect of all other variants on the phenotype besides the effect of the specific variant being tested (SNP s).

Although theoretically we should consider the effect of g when testing for GWAS associations, in practice don’t think this happens in standard GWAS tools, such as PLINK and REGENIE (see below).

PLINK: https://www.cog-genomics.org/plink/2.0/assoc

REGENIE: https://www.nature.com/articles/s41588-021-00870-7#Sec10

https://www.nature.com/articles/s43586-021-00056-9

2312.07511 A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic Systems

January 18, 2025

https://arxiv.org/abs/2312.07511

Duval, A., Mathis, S., V., Joshi, C. K., Schmidt, V., Miret, S., Malliaros, F. D., Cohen, T., Liò, P., Bengio, Y., & Bronstein, M. (2023, December 12). A Hitchhiker’s guide to Geometric GNNs for 3D atomic Systems. arXiv.org. https://arxiv.org/abs/2312.07511

1803.00567 Computational Optimal Transport

January 18, 2025

https://arxiv.org/abs/1803.00567

Peyré, G., & Cuturi, M. (2018, March 1). Computational Optimal transport. arXiv.org. https://arxiv.org/abs/1803.00567

tutorial_on_optimal_transport.pdf

Learning single-cell perturbation responses using neural optimal transport | Nature Methods

January 18, 2025

https://www.nature.com/articles/s41592-023-01969-x

Bunne, C., Stark, S. G., Gut, G., Del Castillo, J. S., Levesque, M., Lehmann, K., Pelkmans, L., Krause, A., & Rätsch, G. (2023). Learning single-cell perturbation responses using neural optimal transport. Nature Methods, 20(11), 1759–1768.
https://doi.org/10.1038/s41592-023-01969-x

not so useful for learning OT